ANALISIS SENTIMEN PENGGUNA TIKTOK TENTANG PROGRES PEMBANGUNAN IKN DENGAN METODE RANDOM FOREST

Authors

  • Siti Rihastuti STMIK Amikom Surakarta
  • Afnan Rosyidi STMIK Amikom Surakarta

DOI:

https://doi.org/10.54840/jcstech.v5i1.345

Keywords:

Klasifikasi sentimen, tiktok, random forest, komentar

Abstract

Abstract

Sentiment classification is a text analysis technique used to identify and categorize user opinions about an application or service. This study aims to classify public sentiment about the progress of the development of the IKN (Indonesian Capital) with the Random Forest algorithm based on comments from users of the Tiktok platform. The dataset was taken from Kaggle with 1472 comments in Indonesian. The dataset used consists of user comments categorized into positive and negative sentiments. The evaluation was carried out based on the accuracy, precision, recall, and F1-score metrics to determine the results of the user sentiment classification. Testing the Random Forest method on Google Colab showed an accuracy value of 77%, precision 78%, recall 77% and F1-score 77%. From these values, the Random Forest method is considered quite good in classifying Tiktok user sentiment in responding to the progress of the IKN relocation.

References

Alhafiz, V., & Adiguna, M. A. (2024). PENGEMBANGAN APLIKASI WEB SCRAPING UNTUK PENGUMPULAN DATA HARGA PRODUK E-COMMERCE MENGGUNAKAN PYTHON ( STUDI KASUS : TOKOPEDIA ). Jurnal Penelitian Ilmu Komputer, 2(2), 1–13.

Arwindarti, T., Setiawan, E. I., & Imron, S. (2023). Klasifikasi Sentimen Opini Publik Pada Instagram Pemerintah Kabupaten Bojonegoro Menggunakan LSTM. Teknika, 13(1), 1–9. https://doi.org/10.34148/teknika.v13i1.699

Bouchra, F., Agus, I. M., Suarjaya, D., Kadek, N., & Rusjayanthi, D. (2018). Analisis Sentimen Masyarakat terhadap Tayangan Televisi Nasional menggunakan Metode Deep Learning. Jurnal Buana Informatika, 89–99.

Guntara, R. G., Kashira, F. B., Amri, T. K., Restu, L. B., & Susanto, F. R. (2024). Analisis Penjualan Handphone di Tokopedia dengan Teknik Web Scraping Menggunakan Python pada Google Colab. ULIL ALBAB : Jurnal Ilmiah Multidisiplin, 3(4), 69–75. https://journal-nusantara.com/index.php/JIM/article/view/3200

Hendrawan, A., & Sela, E. I. (2024). Analisis Sentimen Komentar Youtube Tentang Resesi Global 2023 Menggunakan LSTM. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(1), 587–593. https://doi.org/10.35870/jimik.v5i1.526

Herjanto, M. F. Y., & Carudin, C. (2024). Analisis Sentimen Ulasan Pengguna Aplikasi Sirekap Pada Play Store Menggunakan Algoritma Random Forest Classifer. Jurnal Informatika Dan Teknik Elektro Terapan, 12(2), 1204–1210. https://doi.org/10.23960/jitet.v12i2.4192

Machine, S. V. (2025). Penerapan Algoritma Klasifikasi Naive Bayes dan Support Vector Machine untuk Analisis Sentimen Cyberbullying Bilingual di Aplikasi X Implementation of Naive Bayes and Support Vector Machine Classification Algorithms for Sentiment Analysis of Bilingual Cyb. Sistemasi: Jurnal Sistem Informasi, 14, 211–224.

Maradona, M., Kusrini, K., & Alva Hendi Muhammad. (2023). Analisis Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Untuk Klasifikasi Cyberbullying Pada Sosial Media Twitter. Metik Jurnal, 7(2), 47–61. https://doi.org/10.47002/metik.v7i2.591

Mutmatimah, S., Khairunnas, & Khairunnisa. (2024). Metode Deep Learning LSTM dalam Analisis Sentimen Aplikasi PeduliLindungi. Journal of Computers Sciences and Informatics, 1(1), 9–19. https://doi.org/10.34304/scientific.v1i1.231

Rizqi, M., Rustiawan, A., & Prasetyaningrum, P. T. (2024). Analisis Sentimen Terhadap Klinik Natasha Skincare di Yogyakarta Dengan Metode Google Review. Journal of Information Technology Ampera, 5(1), 2774–2121. https://doi.org/10.51519/journalita.v5i1.556

Supian, A., Tri Revaldo, B., Marhadi, N., Efrizoni, L., & Rahmaddeni, R. (2024). Perbandingan Kinerja Naïve Bayes Dan Svm Pada Analisis Sentimen Twitter Ibukota Nusantara. Jurnal Ilmiah Informatika, 12(01), 15–21. https://doi.org/10.33884/jif.v12i01.8721

Widiyantoro, P., & Prasetyo, Y. D. (2025). Deteksi Cyberbullying pada Pemain Sepak Bola di Platform Media Sosial “ X ” Menggunakan Metode Long Short-Term Memory ( LSTM ). Repeater : Publikasi Teknik Informatika Dan Jaringan.

Downloads

Published

2025-05-07

How to Cite

Siti Rihastuti, & Afnan Rosyidi. (2025). ANALISIS SENTIMEN PENGGUNA TIKTOK TENTANG PROGRES PEMBANGUNAN IKN DENGAN METODE RANDOM FOREST . Journal of Computer Science and Technology (JCS-TECH), 5(1), 19–23. https://doi.org/10.54840/jcstech.v5i1.345

Issue

Section

Articles