ANALISIS SENTIMEN PENGGUNA TIKTOK TENTANG PROGRES PEMBANGUNAN IKN DENGAN METODE RANDOM FOREST
DOI:
https://doi.org/10.54840/jcstech.v5i1.345Keywords:
Klasifikasi sentimen, tiktok, random forest, komentarAbstract
AbstractSentiment classification is a text analysis technique used to identify and categorize user opinions about an application or service. This study aims to classify public sentiment about the progress of the development of the IKN (Indonesian Capital) with the Random Forest algorithm based on comments from users of the Tiktok platform. The dataset was taken from Kaggle with 1472 comments in Indonesian. The dataset used consists of user comments categorized into positive and negative sentiments. The evaluation was carried out based on the accuracy, precision, recall, and F1-score metrics to determine the results of the user sentiment classification. Testing the Random Forest method on Google Colab showed an accuracy value of 77%, precision 78%, recall 77% and F1-score 77%. From these values, the Random Forest method is considered quite good in classifying Tiktok user sentiment in responding to the progress of the IKN relocation.
References
Alhafiz, V., & Adiguna, M. A. (2024). PENGEMBANGAN APLIKASI WEB SCRAPING UNTUK PENGUMPULAN DATA HARGA PRODUK E-COMMERCE MENGGUNAKAN PYTHON ( STUDI KASUS : TOKOPEDIA ). Jurnal Penelitian Ilmu Komputer, 2(2), 1–13.
Arwindarti, T., Setiawan, E. I., & Imron, S. (2023). Klasifikasi Sentimen Opini Publik Pada Instagram Pemerintah Kabupaten Bojonegoro Menggunakan LSTM. Teknika, 13(1), 1–9. https://doi.org/10.34148/teknika.v13i1.699
Bouchra, F., Agus, I. M., Suarjaya, D., Kadek, N., & Rusjayanthi, D. (2018). Analisis Sentimen Masyarakat terhadap Tayangan Televisi Nasional menggunakan Metode Deep Learning. Jurnal Buana Informatika, 89–99.
Guntara, R. G., Kashira, F. B., Amri, T. K., Restu, L. B., & Susanto, F. R. (2024). Analisis Penjualan Handphone di Tokopedia dengan Teknik Web Scraping Menggunakan Python pada Google Colab. ULIL ALBAB : Jurnal Ilmiah Multidisiplin, 3(4), 69–75. https://journal-nusantara.com/index.php/JIM/article/view/3200
Hendrawan, A., & Sela, E. I. (2024). Analisis Sentimen Komentar Youtube Tentang Resesi Global 2023 Menggunakan LSTM. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(1), 587–593. https://doi.org/10.35870/jimik.v5i1.526
Herjanto, M. F. Y., & Carudin, C. (2024). Analisis Sentimen Ulasan Pengguna Aplikasi Sirekap Pada Play Store Menggunakan Algoritma Random Forest Classifer. Jurnal Informatika Dan Teknik Elektro Terapan, 12(2), 1204–1210. https://doi.org/10.23960/jitet.v12i2.4192
Machine, S. V. (2025). Penerapan Algoritma Klasifikasi Naive Bayes dan Support Vector Machine untuk Analisis Sentimen Cyberbullying Bilingual di Aplikasi X Implementation of Naive Bayes and Support Vector Machine Classification Algorithms for Sentiment Analysis of Bilingual Cyb. Sistemasi: Jurnal Sistem Informasi, 14, 211–224.
Maradona, M., Kusrini, K., & Alva Hendi Muhammad. (2023). Analisis Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Untuk Klasifikasi Cyberbullying Pada Sosial Media Twitter. Metik Jurnal, 7(2), 47–61. https://doi.org/10.47002/metik.v7i2.591
Mutmatimah, S., Khairunnas, & Khairunnisa. (2024). Metode Deep Learning LSTM dalam Analisis Sentimen Aplikasi PeduliLindungi. Journal of Computers Sciences and Informatics, 1(1), 9–19. https://doi.org/10.34304/scientific.v1i1.231
Rizqi, M., Rustiawan, A., & Prasetyaningrum, P. T. (2024). Analisis Sentimen Terhadap Klinik Natasha Skincare di Yogyakarta Dengan Metode Google Review. Journal of Information Technology Ampera, 5(1), 2774–2121. https://doi.org/10.51519/journalita.v5i1.556
Supian, A., Tri Revaldo, B., Marhadi, N., Efrizoni, L., & Rahmaddeni, R. (2024). Perbandingan Kinerja Naïve Bayes Dan Svm Pada Analisis Sentimen Twitter Ibukota Nusantara. Jurnal Ilmiah Informatika, 12(01), 15–21. https://doi.org/10.33884/jif.v12i01.8721
Widiyantoro, P., & Prasetyo, Y. D. (2025). Deteksi Cyberbullying pada Pemain Sepak Bola di Platform Media Sosial “ X ” Menggunakan Metode Long Short-Term Memory ( LSTM ). Repeater : Publikasi Teknik Informatika Dan Jaringan.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Computer Science and Technology (JCS-TECH)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.